Faculty of Civil and Environmental Engineering

STUDY MODULE DESCRIPTION FORM					
Name of the module/subject Construction Project Management		Code 1010102111010111978			
Field of study Civil Engineering Second-cycle Studies	Profile of study (general academic, practical) (brak)	Year /Semester			
Elective path/specialty Roads and Airfields	Subject offered in: Polish	Course (compulsory, elective) obligatory			
Cycle of study:	Form of study (full-time,part-time)				
Second-cycle studies	full-time				
No. of hours Lecture: 2 Classes: - Laboratory: -	Project/seminars:	No. of credits			
Status of the course in the study program (Basic, major, other) (university-wide, from another field)					
(brak)	(brak)				
Education areas and fields of science and art		ECTS distribution (number and %)			
technical sciences		3 100%			
Responsible for subject / lecturer:		1			

dr inż. Tomasz Wiatr

email: tomasz.wiatr@put.poznan.pl

tel. 665-2454, 665-2457

Faculty of Civil and Environmental Engineering

ul. Piotrowo 5, 60-965 Poznań

Prerequisites in terms of knowledge, skills and social competencies:

1	Knowledge	Knowledge from area of key subjects contained in educational standard of the first-cycle civil engineer studies, including knowledge of construction techniques.
2	Skills	Designing of simpler construction facilities (building-, bridge-, road-, railway- type) at the area of selected branch of civil engineering, having regard operation needs.
3	Social competencies	Basic teamwork competences, openness for cooperation, respect for common effects of creative designing work of engineers (authorship, as a result of teamwork).

Assumptions and objectives of the course:

Co-creation of professional civil engineers qualifications (for own specialty), like a designers and managers in construction. Particular significance has integration of design and execution knowledge, as well computer modelling of construction facility and construction simulation, like a base of feasible project plan implementation and managing of them.

Study outcomes and reference to the educational results for a field of study

Knowledge:

- 1. Project management knowledge areas recognition and connection of them with rest construction knowledge (elements of construction project engineering). [K_W10]
- 2. Classification and application of software for project scheduling (PMS), construction facility designing (BIM) and integrated construction planing/design (6D BIM). $[K_{-}W08]$
- 3. Knowledge improvement about construction facilities (specific for given specialty) across structures designing and optimisation of model facilities (concept and details). [K_W09]

Skills:

- 1. Facility designing in 3D BIM approach with aid of resources and industrial foundation classes (IFC). [K_U02]
- 2. Project network scheduling in time-cost aspect with aid of resources and project structure organisation. [K_U10]
- 3. Visualisation in time-spatial approach (elements of 4D simulation) in context of safety and logistics. [K_U12]

Social competencies:

- 1. Overall look at project from the recipient (user/orderer/investor) point of view in the aspect of whole life cycle of facility (construction-operation-deconstruction). [K_K04]
- 2. Competences for project teamwork (sense of common goal and role of communication and motivation) with taking of other project participants needs (coworkers, cooperants, stakeholders). [K_K05]
- 3. Readiness for engage in the professional practice towards independent technical functions with taking of society needs (ethics and professional liability). [K_K01]

Assessment methods of study outcomes

Base of lecture note is writing test contained up to 9 issues (short tasks of calculate-, describe-, indicate- type) with over 4 fully correct answers; base of laboratories note is project elaboration in electronic (source files) and printed (PDF) version as well ability to submit what was done (result and the way to achieve it).

Course description

Lecture: review of project management knowledge areas in construction; financial, procurement, payment and delivery systems of investment projects; formal and law procedures; project design, pre-tender and post-completition documentation (designing as project planing); categorisation of facilities with levels of design supervision and execution inspection; methods of project planning and control (products, processes, resources) in aspect of BIM; time-cost/values-resources analysis as well risk/reliability; fundamentals of construction project engineering (own model CMS/IVO with algorithms in CPM/IVO subsystem version); calculation examples, computer systems operating rules, practical tips.

Laboratories: preparation of construction project plan for group of objects (under-ground, ground, above-ground) in teamwork mode. Base of works is settlement or plant incl. primary, auxiliary and accompanying objects as a subprojects. Developed are: general technical specification of performance and acceptance for given functional/utility program (scope), 3D model in BIM approach, components selection and layout with aid of cost/reliability criteria (design, as creating of components structure), project organisational structure of staff/crews with back-office, logistic/financial project schedule with visualisation of constructed facility and site/field (elements of 4D simulation), health and safety information with residual risks register.

Software: Tekla Structures Construction Modelling/Construction Management or Nemetchek Allplan Engineering/Terrain or tools of IntelliCAD (with BIM modules), OpenOffice class as well Pertmaster/Primavera Contractor or Project Constructor with library of BIM components created with participation of university scientific circle no 24.

Basic bibliography:

- 1. Gasparski W., Projektowanie. Koncepcyjne przygotowanie działań. PAN PWN, Warszawa 1978.
- 2. Pawlak M., Zarządzanie projektami. Wydawnictwo Naukowe PWN, Warszawa 2006.
- 3. Behrens W., Hawranek P. M., Poradnik przygotowania przemysłowych studiów feasibility. UNIDO, 1993.
- 4. Behnke M., Czajka-Marchlewicz B., Dorska P., Umowy w procesie budowlanym. Wolters Kluwer, Warszawa 2011.
- 5. Praca zbiorowa. Podręcznik dla inwestorów przedsięwzięć infrastrukturalnych. MRR, Warszawa 2010.
- 6. Korzeniewski W., Poradnik projektanta budownictwa mieszkaniowego. Arkady, Warszawa 1989.
- 7. Praca zbiorowa. Poradnik kierownika budowy. PZITB Arkady, Warszawa 1990.

Additional bibliography:

- 1. Caupin G., Knöpfel H., Morris P., Motzel E., Pannenbäcker O., National Competence Baseline (NCB) Based on IPMA Competence Baseline. SPMP, 2002.
- 2. Hendrickson C., Project Management for Construction. Fundamentals Concepts for Owners, Engineers, Architects and Builders. Carnegie Mellon University, Pittsburgh 2008.
- 3. Eastman C., Teicholz P., Sacks R., Liston K., BIM Handbook. A Guide to Building Information Modelling for Owners, Managers, Designers, Engineers and Contractors. Wiley, 2008.
- 4. Plotnick F., O-Brien J., CPM in Construction Management. McGraw-Hill, 2009.
- 5. Winch G. M., Managing Construction Projects. Blackwell Publishing, 2002.

Result of average student's workload

Activity	Time (working hours)	
1. Classes participation	45	
2. Works preparation	20	
3. Computer work	30	
4. Works finishing	10	

Student's workload

Source of workload	hours	ECTS
Total workload	90	3
Contact hours	45	1
Practical activities	75	2